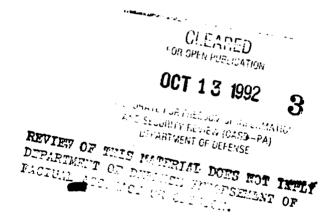


# AD-A257 895



<SYNBRM.W3;12/05/91>

SDTIC SELECTE NOV 2 3 1992 C


APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

#### BREMMSTRAHLUNG AND SYNCHROTRON

### RADIATION LOSSES IN POLYWELL<sup>tm</sup> SYSTEMS

EMC2-1291-02

Robert W. Bussard and Katherine E. King



† This work performed under Contract No. MDA-972-90-C-0006 for the Defense Advanced Research Projects Agency, Defense Sciences Office.

EMC2° ENERGY/MATTER CONVERSION CORPORATION 9100 A Center Street, Manassas, VA 22110, (703) 330-7990

## BREMMSTRAHLUNG AND SYNCHROTRON RADIATION LOSSES IN POLYWELL \*\* SYSTEMS

Power losses from Polywell<sup>ts</sup> systems due to bremmstrahlung and synchrotron radiation have been analyzed and compared with fusion power production. Results of these studies are given in two earlier technical reports.<sup>1,2</sup> The analyses reported here are supplementary to data given in these two studies.

Taking the ratios of fusion power to synchrotron radiation and bremmstrahlung as  $P_{fs}$  and  $P_{fb}$  from eqs. (10) and (13) of refs. (1) and (2), respectively, calculations have been made of these ratios as a function of system electron injection energy, over a range of virtual anode heights, for the four fusion fuel combinations previously considered. These were computed for optimum mixture ratios and for 50:50 mixtures. A key factor in the determination of bremmstrahlung losses is the functional term  $F_b$  (see eqs. 5, 8 of ref. 2) given as

$$F_b = [F_3(Z)][E_f k_e^{1.5} (2/m_p M_1)^{0.5}]/1.69E-31$$
 (1)

where  $E_f$  is fusion reaction energy in MeV,  $m_p$  is proton mass in gm,  $M_i$  is the "reduced" mass of the fusion reactive ions, normalized to one proton mass, and  $k_a = 1.6E-12$  ergs/eV is the Boltzmann constant. The functional term  $F_3(Z)$  is

$$F_3(Z) = [b_{ij}]/[1*(Z_2-1)f_2][1+(Z_2^2-1)f_2]$$
 (2)

where  $f_2$  is the fraction of fuel mixture taken up by the high-Z component, and  $b_{ij}$  is the (usual) fuel mixture weighting factor, given here by

$$b_{ij} = (1-f_2)f_2 \tag{3}$$

as used in refs. 1 and 2. The variation of  $F_b$  with mixture ratio factor  $f_2$  is as shown in Figure (1), for the four fuels considered. Note that  $F_b$  reaches a maximum as a function of  $f_2$ , for the higher-Z fuels. From the figure it is seen that this optimum operation (maximizing the ratio of fusion power to bremmstrahlung) occurs at fractional mixture content,  $f_2$ , smaller than 0.5. Optimum values are

| For | DT<br>DD<br>D³He  | Optimum f <sub>2</sub> is | 0.50 (in range 5 keV < E <sub>o</sub> < 50 keV)<br>indeterminate<br>0.261 |  |
|-----|-------------------|---------------------------|---------------------------------------------------------------------------|--|
|     | р <sup>11</sup> В |                           | 0.084                                                                     |  |

Note, also, that the variation of  $F_b$  with  $f_2$  is very slow around these optimum values for  $D^3$ He and  $p^{11}B$ , so that higher values of  $f_2$  may be used without strongly deleterious effects on the fusion-to-bremmstrahlung power ratios, especially in the case of  $p^{11}B$ .

Using the above in the calculation of  $P_{fb}$  and  $P_{fs}$  gives the curves shown in Figures (2a,b) and (3a,b). Figures (2a,b) are for fusion fuels operating with a mixture fraction of  $f_b = 0.5$ , while Figures (3a,b) are for  $f_b$  values that are optimum with respect to bremmstrahlung production, as tabulated above. The (a) figures apply to the case of a small central virtual anode height (eta = 0.01)

with correspondingly small central electron "temperature," while the (b) figures are for a considerably higher central anode (eta = 0.1), with much higher electron temperature.

Note that all of the systems can be made to operate with  $P_{fb}$  ratios greater than unity except for  $p^{11}B$  at non-optimum mixture ( $f_b = 0.5$ ) and large central anode conditions. If central anode height can be kept small, and operation be constrained to near-optimum mixtures, then  $p^{11}B$  will yield net power gain if deep wells (e.g.  $E_o > 500$  keV) can be provided for ion trapping.

However, the true overall power balance must also include losses associated with the provision of magnetic fields required for electrostatic well formation in the Polywell<sup>tm</sup> scheme. Two types of field systems can be considered; normal and superconducting magnets. The former will show losses proportional to B<sup>2</sup>, while fusion power output varies as B<sup>4</sup>. Thus, any normal magnet system can be made to approach the zero-magnet-power systems reported here and in refs. (1,2) by operation at sufficiently large fields.

In a somewhat similar vein, superconducting (s/c) magnets can be made to operate with arbitrarily small power consumption, by design reduction of thermal loads on the magnet coil systems, that set the level of the required cryogenic cooling power (and thus of the lost cryo-refrigeration drive power). Either approach can then be driven (by design) towards the asymptotic power ratios discussed above and shown here in Figures (2,3). However, it is important to note that s/c magnets must either be restricted to use with aneutronic fusion fuel systems, or well-shielded to prevent excessive unavoidable neutron heating of the conductor material, with concommitant excessive cryogenic refrigeration power requirements.

These heating, refrigeration, insulation and other magnet power balance issues are addressed in another EMC2 Technical Note (forthcoming), over a range of system sizes and B fields.

#### REFERENCES

1. Robert W. Bussard, "Edge Region Distributions and Synchrotron Radiation," Energy/Hatter Conversion Corporation Technical Report, EMC2-0991-04

2. Robert W. Bussard and Katherson E. King, "Bremstrahlung Radiation Losses in Polywell<sup>tm</sup> Systems," Energy/Hatter Conversion Corporation Technical Report, EHC2-0891-04

|                                  |          | <b>/</b> |  |  |
|----------------------------------|----------|----------|--|--|
| AU G G                           | 5100 For |          |  |  |
| NTIG                             | GREAT T  |          |  |  |
| Prec                             | 748      |          |  |  |
|                                  | sounded  |          |  |  |
| Justi                            | fication |          |  |  |
| ļ                                |          |          |  |  |
|                                  |          |          |  |  |
| Distribution/ Availability Codes |          |          |  |  |
|                                  |          |          |  |  |
| Dist                             | Special  |          |  |  |
| h 1                              | 1 1      |          |  |  |
| M-1                              |          |          |  |  |
| 111,                             | 1 1      | 1        |  |  |
|                                  | 1        |          |  |  |

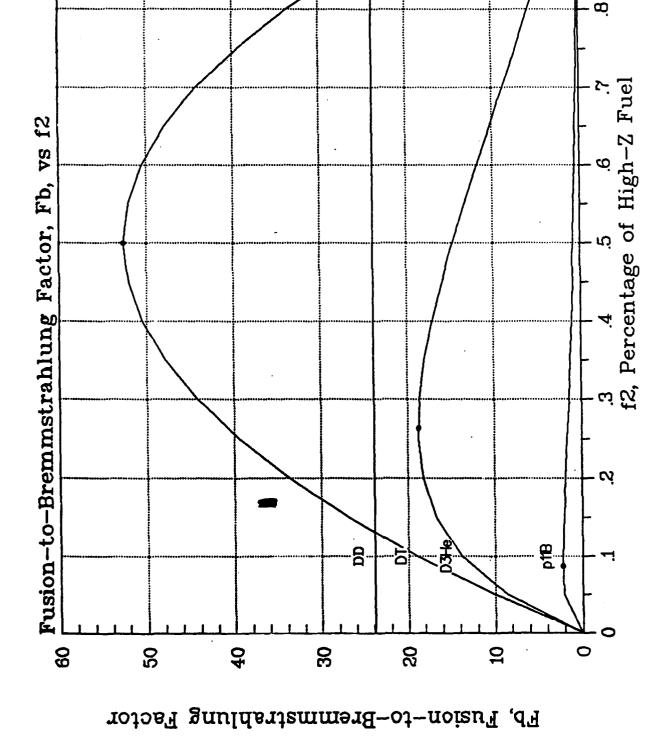
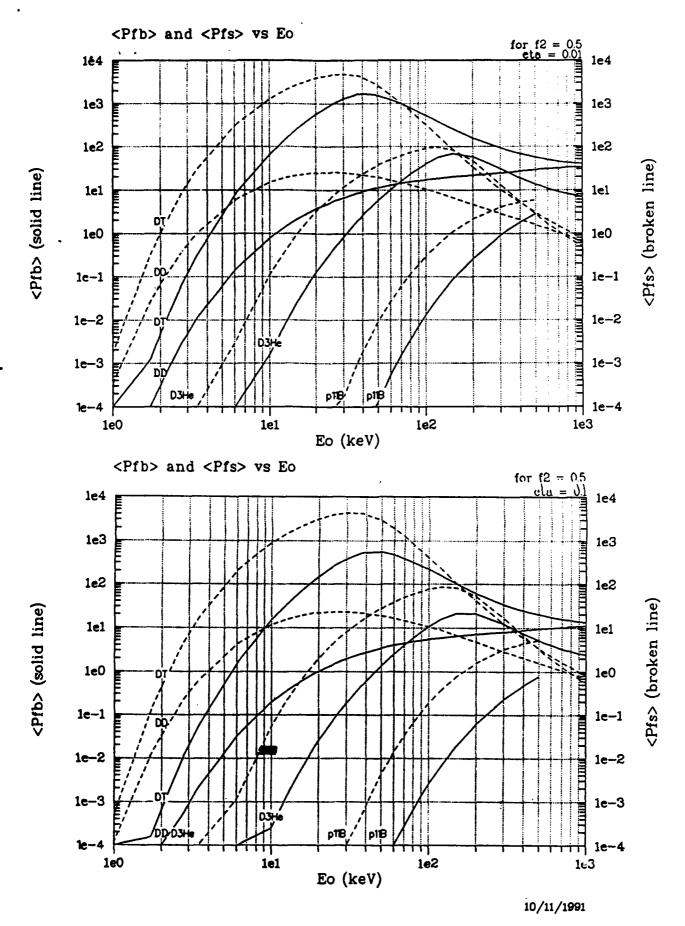
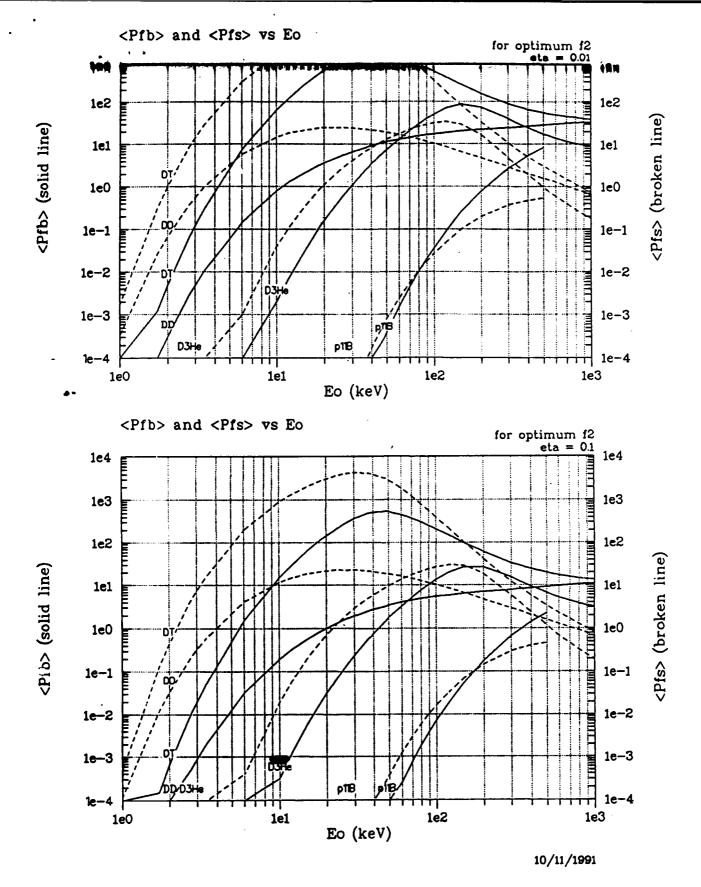





Figure 1. Fusion-to-Bremmstrahlung power ratio factor,  $\mathbf{F_b}$ , for various fuels, as a function of fractional content of high-Z fuel

10/10/1991



Figures 2a,b. Ratio of fusion power to bremmstrahlung  $(P_{tb})$  and to synchrotron radiation power  $(P_{ta})$ , for various fuels, as a function of electron injection energy  $(E_o)$ , for 50:50  $(f_a = 0.5)$  fuel mixtures. Figure (a) is for a virtual anode height of (eta) = 0.01; figure (b) is for (eta) = 0.1.



Figures 3a,b. Ratio of fusion power to bremmstrahlung  $(P_{fb})$  and to synchrotron radiation power  $(P_{fe})$ , for various fuels, as a function of electron injection energy  $(E_o)$ , for bremmstrahlung-optimum- $f_g$  fuel mixtures. Figure (a) is for a virtual anode height of (eta) = 0.01; figure (b) is for (eta) = 0.1.